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Introduction

1. Longitudinal Wave

Goals

• Understand the nature of the longitudinal
wave with sound waves.

• Detect the nodes or antinodes of a longitu-
dinal standing wave.

• Experience the sound-cancellation phe-
nomenon.

• Estimate the speed of sound in the air.

Fig. 1: The first overtone of the standing-wave res-
onance emerging inside a pipe with both ends open.
The red curve inside the pipe represents the ampli-
tude of the standing wave. There are three antinodes
at both ends and at the center. The lower figure rep-
resents the density or pressure of the air molecules
per unit volume: the darker the color, the greater
the density or pressure; the longer the arrow, the
larger the amplitude of the longitudinal oscillation of
air molecules.

Theoretical Backgrounds

(a) The sound wave is a compressional wave
along the longitudinal direction. When it
travels in the air as a medium, the pressure
oscillates back and forth along the longitu-
dinal direction, the direction of wave prop-
agation.

(b) The speed v of the sound wave in fluids is
given by the Newton-Laplace equation:

v =

√
B

ρ
, (1)

where ρ is the mass density of the medium
per volume and B is the bulk modulus de-
fined by

B ≡ volume stress

volume strain
= − ∆p

∆V/V
= ρv2. (2)

Here, ∆p and ∆V are the corresponding
changes in the pressure p and volume V .

(c) The oscillation of the pressure at x at time
t can be described by the average value of
the longitudinal displacement of molecules
at that space-time point as

s(t, x) = sm cos(kx− ωt),

where sm is the displacement amplitude
from equilibrium position and we have ne-
glected the constant phase.

(d) If the cross-sectional area of the pipe is A,
then

• V = A∆x is the volume of the air sam-
ple in [x, x+∆x],

• ∆V = A∆s is the change in V ,

According to (2), the pressure change ∆p
due to the sound wave is given by

∆p = −B
∆V

V
= −ρv2

∆s

∆x
.

In the limit as ∆x → 0,

∆p = −ρv2
∂s

∂x
= (ρvω)sm sin(kx− ωt), (3)

where note that k = ω/v.

(e) A pressure microphone is a device that
detects the pressure change ‘∆p(t, x)’ in-
stead of the displacement ‘s(t, x)’. It is real-
ized by exposing the diaphragm on only one
side to the impinging sound. When mea-
suring the amplitude of a sound wave us-
ing a pressure microphone, the greater the
signal, the smaller the longitudinal displace-
ment s(t, x).
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(f) At certain frequencies, standing waves occur
as the harmonic series in pipes of length L.
The emergence of the standing waves indi-
cates that such a sound wave is a resultant
wave of two identical waves propagating in
opposite directions:

s(t, x) = sm cos(kx− ωt) + sm cos(kx+ ωt)

= [2sm cos kx] cosωt, (4)

∆p(t, x) = am sin(kx− ωt) + am sin(kx+ ωt)

= [2am sin kx] cosωt, (5)

where am = vρωsm.

At an open end:

• The x-dependent factor in the displace-
ment s has the maximum value.

• The x-dependent factor in the pressure
change ∆p has the minimum value.

At a closed end:

• The x-dependent factor in the displace-
ment s has the minimum value.

• The x-dependent factor in the pressure
change ∆p has the maximum value.

(g) A speaker generates a sound wave in
such a way that the vibration of the di-
aphragm derives the displacement s(t, x) of
air molecules. Suppose that a standing wave
emerges due to the driving force of the vi-
brating speaker placed at x = x0.

• x0 must be the antinode of the standing
wave for s(t, x).

• x0 must be the node of the standing
wave for ∆p(t, x):

The same is true for any open end. In sum-
mary, if there is an open end at ‘x0,’ then

∂

∂x
s(t, x0) = 0, (6a)

∆p(t, x0) = 0. (6b)

(h) A closed end of a pipe reflects a sound wave
in such a way that the displacement s(t, x) of
air molecules is vanishing on the wall. Sup-
pose that a standing wave emerges inside
a pipe and a closed end (wall) is placed at
x = x0.

• x0 must be the node of the standing
wave for s(t, x).

• x0 must be the antinode of the standing
wave for ∆p(t, x).

In summary, if there is a closed end at ‘x0,’
then

s(t, x0) = 0, (7a)

∂

∂x
∆p(t, x0) = 0. (7b)

2. E1: Two Open Ends

Goals

• Understand the resonance in the pipe of two
open ends.

• Identify the nodes and antinodes for the
pressure change ∆p(t, x).

• Identify the nodes and antinodes for the dis-
placement s(t, x).

• Estimate the speed of sound in the air.

Fig. 2: The three lowest frequencies of the harmonics
inside a pipe with two open ends. The red and blue
curves represent s(t, x) and ∆p(t, x), respectively.

Theoretical Backgrounds

(a) The coordinates for the both ends are x = 0
and L. According to (5) and the boundary
condition for an open end (6), we find that

sin k0 = sin kL = 0. (8)

The solution is kL = nπ for any positive in-
teger n. Substituting k = 2π/λ, we find the
quantized values for the wavelength as

λn =
2L

n
, n = 1, 2, 3, · · · .
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(b) The corresponding quantized values for the
resonant frequencies that generate standing
waves are

fn =
v

λn
=

n

2L
v, n = 1, 2, 3, · · · .

3. E2: One Open, the Other Closed

Goals

• Understand the resonance in the pipe with
an open end and a closed one.

• Identify the nodes and antinodes for the
pressure change ∆p(t, x).

• Identify the nodes and antinodes for the dis-
placement s(t, x).

• Estimate the speed of sound in the air.

Fig. 3: The three lowest Dm’s defined in (9) for a
sound wave of frequency f inside a pipe whose left
end is open and the other end is closed . The red
and blue curves represent the x dependences of the
resultant waves for s(t, x) and ∆p(t, x), respectively.

Theoretical Backgrounds

(a) The coordinates for the open and closed
ends are x = 0 and L, respectively. Ac-
cording to (5) and the boundary condition
for an open end (6), we find that

sin k0 = 0.

This is a trivial equation. According to (5)
and the boundary condition for an open end
(7), we find that

cos kL = 0.

The solution is

kL = nπ − π

2

for any integer n. Substituting k = 2π/λ,
we find the quantized values for the wave-
length as

λn =
2L

n− 1
2

, n = 1, 2, 3, · · · .

(b) The corresponding quantized values for the
resonant frequencies that generate standing
waves are

fn =
v

λn
=

n− 1
2

2L
v, n = 1, 2, 3, · · · .

(c) If we keep the frequency invariant, then the
standing waves emerge for the following val-
ues Dm for the variable length L:

Dm =
λ

2

(
m− 1

2

)
, m = 1, 2, 3, · · · .

(9)

Experimental Procedure

1. E1

(a) Measure the length of a pipe.

(b) Locate a speaker at the end of the pipe
and connect the speaker to output 2 of
a PASCO 850 Interface .

(c) Apply the AC to the speaker

(d) Find the resonant frequencies when
n=1, 2, and 3.

2. E2

(a) Locate a speaker at the end of the pipe
and connect the speaker to output 2 of
the interface.
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(b) Apply the AC with frequency 500 Hz to
the speaker.

(c) Inset a piston to the other end of the
pipe.

(d) Move the piston and measure the length
between open end and piston when res-
onance.
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Appendix 1: Noise Cancelling

Goals

• Investigate the interference pattern of two
sound sources.

• Understand the mechanism of the noise can-
cellation.

Fig. 4: When the frequency of two sound sources S1

and S2, is a resonant frequency, the resultant wave
can be analyzed as a superposition of two standing
waves. The first (second) figure shows the case where
the phase difference is π (0) between the two stand-
ing waves in the second harmonic (n = 2). Here, the
red and blue curves describe the x dependences of the
resultant waves for s(t, x) and ∆p(t, x), respectively.

Theoretical Backgrounds

(a) The two identical sound sources S1 and S2

are placed at one end and the other end, re-
spectively, of the pipe with both ends open.
If they generate a standing wave of equal
amplitude, then the displacements si(t, x)
induced by Si are given by

s1(t, x) = 2sm cos kx cosωt,

s2(t, x) = −2sm cos[k(L− x)] cos (ωt+ δ)

= (−1)n+1 × 2sm cos kx cos (ωt+ δ) ,

where n represents the nth harmonic of the
standing waves. Here, δ is the relative phase
between two sources which is not zero in
general. Note that the overall (−1) in the
second line in s2(t, x) is due to that the di-
rection of the oscillations of air molecules is
flipped with respect to s1(t, x). In the last

line, the following identity has been used:

cos[k(L− x)] = cos
(
nπ − nπx

L

)
= cosnπ cos

nπx

L
= (−1)n cos kx.

(b) By making use of the following trigonomet-
ric identities:

cos(ωt) = cos(ωt+
δ

2
) cos

δ

2

+ sin(ωt+
δ

2
) sin

δ

2
,

cos(ωt+ δ) = cos(ωt+
δ

2
) cos

δ

2

− sin(ωt+
δ

2
) sin

δ

2
,

we simply the resultant displacement as

s1 + s2

=

{
4sm cos kx cos

(
ωt+ δ

2

)
cos δ

2 , for odd n,

4sm cos kx sin
(
ωt+ δ

2

)
sin δ

2 , for even n.

(10)

(c) The resultant sound completely disappears
for any x and t if{

cos δ
2 = 0, for odd n,

sin δ
2 = 0, for even n,

or, equivalently,

δ =

{
(2m+ 1)π, for odd n,

2mπ, for even n,
(11)

where m is an integer.

Experimental Procedure

(a) Locate two identical speakers to the ends of
a pipe and connect the speakers to output 2
and 3 of the interface.

(b) Locate a microphone inside of the tube.

(c) Connect the microphone to the analog input

A and set Sound Sensor .
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(d) Apply the identical AC to both speakers
with frequency measured at E1.

(e) Set Fast Monitor Mode and click Monitor
to collect data.

(f) Change the phase shift of OUTPUT 3 to
180◦.

(g) Draw the V (t) graph and check the ampli-
tudes of in phase and out of phase.

(h) Repeat steps (d)–(g) after replacing the fre-
quency.
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Appendix 2: Beats

Goals

• Measure the pressure change ∆p(t) of the
air using a microphone.

• Estimate the beat frequency fbeat.

Fig. 5: If the frequencies of S1 and S2 are slightly
different, then there is a sharp variation in the inten-
sity of the sound from overlapping s1 and s2. The
intensity of the sound increases and dereases in slow,
wavering beats that repeat at a frequency of fbeat.

Theoretical Backgrounds

(a) Suppose that we prepare a sound source S1

at x = 0 of a pipe with both ends open
and adjust the frequency at a resonance fre-
quency

fn =
v

λn
=

n

2L
v, n = 1, 2, · · · .

Then, the displacement s1 induced by S1 is
given by

s1(t, x) = 2sm cos kx cosωt,

where

ω = 2πfn, k =
nπ

L
.

The other sound source S2 is placed at the
other end of the pipe, x = L, which gen-
erates the sound wave of slightly different
frequency f ′

n from S1 by

f ′
n = fn(1 + δ), δ ≪ 1.

The displacement s2 induced by S2 is a sum
of the incident wave and its reflected wave:

s2(t, x) = −s′m cos[k′(L− x)− ω′t]

−s′m cos[k′x− ω′(t− L/v)]

= −s′m cos(k′x+ ω′t− k′L)

−s′m cos(k′x− ω′t+ k′L)

= −2s′m cos k′x cos(ω′t− k′L)

= (−1)n+12s′m cos k′x cos(ω′t− ϕ),

where ϕ = δnπ,

ω′ = 2πf ′
n = 2πf(1 + δ), k′ =

nπ

L
(1 + δ).

Here, S1 and S2 share the same medium so
that

v =
ω

k
=

ω′

k′
.

Note that the following trigonometric iden-
tity has been used:

cosA+cosB = 2 cos

(
A+B

2

)
cos

(
A−B

2

)
.

(b) The pressure changes ∆p1 and ∆p2 due to
S1 and S2, respectively, are given by

∆p1 = 2smk sin kx cosωt,

∆p2 = (−1)n+12s′mk′ sin k′x cos(ω′t− ϕ).

(c) Assume that we take x = x0 that satisfies
the following condition:

2smk sin kx0 = (−1)n+12s′mk′ sin k′x ≡ A.

At the point x = x0, the total pressure
change ∆p = ∆p1 +∆p2 is given by

∆p = A cosωt+A cos(ω′t− ϕ)

=

[
2A cos

(
ω − ω′

2
t+

ϕ

2

)]
cos

(
ω + ω′

2
t− ϕ

2

)
.

Note that the phase difference ϕ/2 does not
affect the time dependence of ∆p.

The amplitude of ∆p becomes maximum

when cos
(
ω−ω′

2 t+ ϕ
2

)
= ±1. Therefore, the

beat angular frequency ωbeat is given by

ωbeat = |ω − ω′|.

The corresponding frequency fbeat is

fbeat = |fn − f ′
n|.
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Experimental Procedure

(a) Locate two identical speakers to the ends of a
pipe and connect the speakers to output 2 and
3 of the interface.

(b) Locate a microphone inside of the tube.

(c) Connect the microphone to the analog input A

and set Sound Sensor .

(d) Set gain of the sound sensor to 100x in sound
sensor properties.

(e) Apply the AC to the speakers with small fre-
quency difference.

(f) Draw the V (t) graph and measure the frequency
of beating.

(g) Repeat steps (e)–(f) after replacing frequencies
of the speakers.
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